UNIT-II

Finding The Square Root Of A Number

Given a number 'm' devise an algorithm to compute its square root.
square root of a number 4 is 2
Qis3

from the above examples we can say that square root n, of another number m must
satisfy the equation.

n*n=m (1)

to find the square root of a given number the following systematic approach could
be adopted.

1. Choose a number n less than the number m want the square root of.

2. Square n and if it is greater than m decrease n by 1 and repeat step 2, else go to
step 3.

3. when the square of our guess at the square root is less than m we can start
increasing n by 0.1 until we again compute a guess greater than m.

At this point, we start decreasing our guess by 0.01 and so on until we have
computed the square root we require the desired accuracy.

/ Desired square root

desired solution | ========x===f=======Xf---------s-mmss————————--

+ A

Deviation from

»
»

Number of iterations

Through this algorithm , the number of iterations it requires depends critically on how good
our initial guess is.

[Type text]

At this stage we should do some mathematical analysis and do the algorithm with a good
strategy.

Algorithm Description:

1. Establish 'm' the number whose square root is required and the termination condition error
'e'.

2. Set the initial guess g2 to m/2.

3. Repeatedly

(@) let g1 assume the role of g2,

(b) generate a better estimate g2 of the square root using the averaging formula,
until the absolute difference between gl and g2 is less than error 'e".

4. Return the estimated square root g2.

Pascal Implementation:

function sqroot(m, error:real):real;

var gl{previous estimate of square root},
g2{current estimate of square root}: real;

begin{estimates square root of number m}

g2: m/2;

repeat

g1=g2;

g2=(g1+m/gl)/2;

until abs(gl-g2)<error;

sqroot:= g2;

end

Notes:

[Type text]

This design is implemented with feedback principle. that is we keep making corrections to our
estimate in way dependent on how much the previous solution deviated from the desired
result.

The Smallest Divisor Of An Integer

Given an integer n devise an algorithm that will find its smallest exact divisor other than one.

All even numbers are divisible by 2. it follows that if the number is not divisible by 2 it will
not divisible by 4,6,8,10,..... And So if the number we are testing is odd, we should consider
odd numbers as potential smallest divisor candidates.

The overall algorithm cam be written as:

1. If the number 'n' is even, then the smallest divisor is 2
else

(@) Compute the square root r of n,

(b) while no exact divisor less than square root of n do

(b.1) test next divisor in sequence 3, 5, 7, ...

Algorithm Description

1. Establish 'n' the integer whose smallest divisor is required.
2. 1f 'n" is not odd then return 2 as the smallest divisor
else
(@) Compute 'r' the square root of 'n’,
(b) initialize divisor 'd' to 3,
(c) while not an exact divisor and square root limit not reached do
(c.1) generate next number in odd sequence d,
(d) if current odd value d is an exact divisor, then divide it as the

exact divisor of 'n’

[Type text]

else

return 1 as the smallest divisor of 'n'.

_Pascal Implementation
function sdivisor(n:integer): integer;
var d {current divisor and member of odd sequence},
r { integer less than or equal to square root of n}: integer;
begin{finds the smallest exact divisor of an integer n, returns 1 if n prime}
if not odd(n) then
sdivisor:=2
else
begin{terminates search for smallest divisor at sgrt (n)}
r:=trunc(sqrt(n));
d:=3;
while(n mod d< >0) and (d <r) do
d:=d+2;
if n mod d =0 then
sdivisor:=d
else

sdivisor:=1 end end

The Greatest Common Divisor of Two Integers

Given two positive non-zero integers n and m design an algorithm for finding their greatest
common divisor.

[Type text]

The gcd of two integers is the largest integer that will divide exactly into the two integers with
no remainder. We can build up to the common divisor of the two integers by considering an
exact divisor of a single integer. An exact divisor of a number is another smaller number that
divides the original number up into set of equal parts.

The gcd of two numbers cannot be bigger than the smaller of the two numbers.
Next point is how to continue when the smaller of the two numbers n and m is not their gcd
The basic strategy for computing the gcd of two numbers:
1. Divide the larger of two numbers by the smaller number.
2. if the smaller number exactly divides into larger number
then the smaller number is the gvd

else

remove from the larger number the part common to the smaller number and repeat the
whole procedure with the new pair of numbers.

Terminating the gcd mechanism can be detected by there being no remainder after mod
function

rr=nmodm
if r is zero then m is the gcd, else
while gcd not found do
a. get remainder by dividing larger integer by the smaller integer;
b. let the smaller integer assume the role of the larger integer;
c. let the remainder assume the role of the smaller integer.

repeat the same process until zero remainder.

[Type text]

Algorithm description
1.

2.

3.

Establish the two positive non-zero integers smaller and larger whose
ged is being sought.

Repeatedly
(a) get the remainder from dividing the larger integer by the smaller
integer;

(b) let the smaller integer assume the role of the larger integer;
(c) let the remainder assume the role of the divisor

until a zero remainder is obtained.

Return the gcd of the original pair of integers.

Pascal implementation

function gcd(n,m: integer): integer;
var r {remainder after integer division of n by m}: integer;

begin {computes the greatest common divisor for two positive
non-zero integers}
{assert: n>0/Am >0}
repeat
{compute next gcd candidate and associated remainder}
r:=nmodm;
n:=m:
m:=r
until r=0;
{assert: n =gcd of original pair n, and m}
ged :=n
end

Notes on design

1. The number of iterations required by the gcd algorithm is highly
dependent on the input data and whether or not the two integers have a
common divisor greater than 1. A “worst-case’ (ype situation occurs
when the original pair of integers are adiacent Fibonacci numbers.

Applications:

Reducing a fraction to its lowest terms.

[Type text]

Computing the Prime Factors of an Integer

Every integer can be expressed as a product of prime numbers. Design an algorithm
to compute all the prime factors of an integer n.

All the prime factors of 'n' must be less than or equal to Vn. This suggests that to
produce a list of primes up to Vn before going through the process of trying to
establish the prime factors of n. But this may end up in computing a lot more primes
that are needed as divisors.

A Dbetter and more economical strategy is therefore to only compute prime divisors
as needed.

Algorithm description

1. Establish n the number whose prime factors are sought.
2. Compute the remainder r and quotient g for the first prime
nxtprime =2.
3. While it is not established that n is prime do
(a) if nxtprime is an exact divisor of n then
(a.1) save nxtprime as a factor f,
(a.2) reduce n by nxtprime,
else
(a’.1) get next biggest prime from sieve of Eratosthenes,
(b) compute next quotient g and remainder r for current value of n
and current prime divisor nxtprime.
4. If n is greater than 1 then
add n to list as a prime factor f.
5. Return the prime factors f of the original number n.

[Type text]

Pascal implementation

procedure primefactors (var f: nelements; var i: integer; n: integer);
var

q {quotient of n div nxtprime},

r {remainder of n div nxtprime},

nxtprime {next prime divisor to be tested}: integer;
d: array[1..100] of integer; {muiltiples array for sieve}

begin [computes the prime factors f of n by divigion by successive
primes}
jassert: 1> 1}
nxtotine 1 — 2;
g := n div nxtprime;
r = nmod nxtprme,;
i:=0;
{invariant: after current iteration f [1.4] will contain all prime factors
(including repeats)< nxtprime
Mone or more contributions of nxftorime i it is a factor)
while (r=0) or g =nxtprime) do
begin [record factor if exact divisor or get next prime
if r — 0 then
begin {exact divisor so save prime factor and reduce n}
fF:=i+1;
il := nxtprirme,
n:=gq
end
else erafosthenses|d nxtprirme); {get next prime}
g = n div nxtprime;
r = nmod nxtprime
end:
if n =1 then
begin {n /s a prime factor}
Fr=i+1;
il:=n
end
{assert: f[1.4] will contain all prime factors (including repeats) of
original n}
end

Applications:

Factoring numbers with up to six digits.

[Type text]

Generation of Pseudo Random numbers

Use the linear congruential method to generate a uniform set of pseudo random
numbers.

Algorithm Development

Random numbers generators are frequently used in computing science for among
other things, testing and analysing the behaviour of algorithms.

A sequence of random numbers should exhibit the following behaviour
1) The sequence should appear as though each member had occurred by chance.
I1) each number should have a specified probability of falling within a given range.

The implementation of the linear congruential method is very straight forward.
Successive members of the linear congruential sequence {x} are generated using
the expression

Xn+1 = (aXn+b) mod m for n>=0

The parameters a, b and m are referred as the multiplier, increment and modulus
respectively.

All parameters should be integers greater than or equal to zero and m should be
greater than x0, a and b.

Parameter Xo

The parameter Xo can chosen arbitrarily within the range 0<=_X, <m.

Parameter m

The value of m should be greater than or equal to the length of the random
sequence required.

[Type text]

It must be possible to do the computation (a * x+ b) mod m without roundoff.
Parameter a

The choice of a depends on the choice of m. If m is a power of 2 then a should
satisfy the condition

a mod 8=5
a should be larger than Vm and less than m-Vm
Parameter b
The constant b should be odd and not a multiple of 5.
Notes on design.

The linear congruential method is a simple, efficient and practical method for
generating pseudo random numbers.

The theoretical basis for the choice of parameters involves a highly sophisticated
analysis.

[Type text]

Raising A Number To A Larger Power

Given some integer x, compute the value of X" where n is a positive integer
considerably greater than 1.

Evaluating the expression
p=X"
In the power generation process, one of two conditions apply

(a) where we have an odd power it must have been generated from the power that
is one less (e.g X% = X?2* X)

(b) where we have an even power, it can be computed from a power that is half its
size (e.g X% = X12* X11)

These last two statements capture the essence of the algorithm. This means that
our algorithm will need to be in two parts.

1. a part that determines the multiplication strategy and
2. a second part that actually does the power evaluation.

To map out the multiplication procedure, we can start with the power required and
determine whether it is even or odd.

The next step is to integer-divide the current power by 2 and repeat the even/odd
determination procedure.

if the current d array element is zero then

(@) we simply square the current power product p

else

(@) we square the current product p and multiply by X to generate an odd power.

The algorithm will need to terminate when n is reduced to zero

[Type text]

Algorithm description

1. Establish n, the integer power, and x the integer to be raised to the
power n,

2. Initialize the power sequence and product variable for the zero power
case,
3. While the power n is greater than zero do
(a) if next most significant binary digit of power n is one then
{a.1) multiply accumulated product by current power sequence
value;
(b) reduce power n by a factor of two using integer division;
(c) getnext powersequence member by multiplying current value by
itsell.
4. Return x raised to the power n.

Pascal implementation

tunction power(x, n: integer): integer;
var product {current accumulated product, eventually contains resuift},
psequence {current power sequence value}: integer;

begin {romputes x raised to the power n using doubling strategy)
lassert: x=0An==0An0=n}
product 1= 1;
psegquence = x;
{invariant: product » (psequence) Tn=xTnodnn >=0}
while n =0 do
begin {incorporate power for next most significant binary digit if
not zero}
if (m mod 2)=1 then
product ©= praduct ¥ psequence:
n = ndiv 2;
psequernce = pIequence * psequence
end;
{assert: product =x1n0}
power = product
end

Applications.

Encryption and testing for non-priority of numbers.

[Type text]

Computing the nt" Fibonacci number

Given a number n generate the n'" number of the Fibonacci sequence

The n™ member of the fibonacci sequence f, is defined recursively as follows
f1=0
f, =1
fn =fr1+ f o2 forn>2

-

In our present problem we are not sure whether such a ‘“‘doubling
relationship” exists. To explore this possibility let us write down the first few
members of the Fibonacci sequence.

Fibonacci o 1 1 2 3 5 8 13 21 34
number

index, 1 2 3 4 5 6 7 8 9 10

To pick an example let us see if the 8" Fibonacci number can be related to
the 4™ Fibonacci number. We have:

fi=2
Jfs=13

The relationship is
fe=6Xf,+1

we couldn't find any doubling sequence in the above expression.

The next thing is try some combination of two fibonacci sequence to generate the doubled
fibonacci number.

Let us try to write fg in terms of f;and fs

[Type text]

f4"'_ 2

fs=3

f6=f5+f4

fi=fs+fs=(fs+f.)+f; (substituting for fy)
fs=hitfe=[{fstf)+fs1Hfstfa

collecting terms we gel:
f3=3fs+2f,=3x3+2x2=13
Since fs=3 and f, =2 the last expression suggests:
fe=[3+[i
Checking with fj,, fs and f; to see if the formula generalizes, we get

Jo=ltt[i=5+3"=34

Without going into a detailed proof, we might be satisfied that in general:

fo=frat 13

To generate the fon+1 fibonacci number we need f2, and fan.1

foni1 = Fantfona

we finally get, after some substitution and checking:
Soni1 = 2f ot (for n=1)

In this case our algoirthm will need to be in two parts:

1. a part that determines the doubling strategy by generating the binary
representation of n, and

2. asecond part that actually computes the n** Fibonacci number accord-
ing to the doubling strategy.

Notice that ““doubling”’ (f5, f3) only gives us (f,, f5). However, to generate
the next ‘“doubled’’ pair (f,,, fi,) we need the pair (f;, fi). Fortunately we can
simply use the standard formula to generate f, (i.e. fo =f,+f3).

Consider another example where n= 13 (Table 3.3).

Table 3.3
Pair of Fibonacci . . . ;
numbers needed Fibonacci number Binary represeniation
(fl.‘h .fld) _,__._—-————’f[3 dl_l_lzl
) e —— d[2]=0
—'-__'—_—_'____— —
fs. f) _____________——————-"fa d[3]=1
(f1, f2) fi d[4]=1

[Type text]

- We always start out with the pair (f, f;) and to generate the required
Fibonacci number we will always need to make one less doubling step (i—1)

than there are binary digits i in the representation of n (e.g. the binary
representation of n=13 is 1011 and hence 4—1=3 doubling steps are
required). The binary digit that is always accounted for by the initial condi-
tions is always the most significant digit (e.g. for n = 13 itis d[4]) when n has
been reduced to 1. We can eliminate this digit by stopping generating binary
digits one step earlier.

If we use fn and fnpl for the Fibonacci numbers f, and f,, , respectively
and f2n and f2npl for f,, and f,,,, we will have the initial doubling steps:

f2n := fnxfn+fnpl=fnpl;
f2npl := 2*fn*xfnpl+fnpl*fnpl

and then the following reassignments in preparation for the next doubling
step:

frn = f2npl;
frnpl := f2npl+f2n (extension by 1)

- Using the variables fn, fnp1, f2n, f2np1 again, we have in this case first
the initially doubling steps as before: that is,

f2n := fn*fn+fnpl*fnpl;
f2npl := 2%fn*fnpl+fapl*fnpl
and then the following reassignments in preparation for the next doubling

step:

fn:= f2n,
fapl := f2npl

[Type text]

Algorithm description

1. Establish n, indicating the n™ Fibonacci number is required.
2. Derive the binary representation of n by repeated division by 2 and
store representation in array d[1..i—1].
3. [Initialize the first two members of the doubling sequence.
4. Stepping down from the (i—1)* most significant digit in the binary
representation of n to 1 do
(a) use current pair of Fibonacci numbers f, and [, to generate the
pair f,, and fy,.,
(b) if current binary digit d[k] is zero
then make the reassignments to f, and f,,,
else extend sequence by 1 number and then make the reassign-
ments to f, and f,,,.
5. Return the n™ Fibonacci number f,.

Generating Prime Numbers

Design an algorithm to establish all the primes in first n positive numbers

A prime number is a positive integer that is exactly divisible only by 1 and itself.
The first few prime are

2,3,5,7,11,13,17,19,.....

All primes apart from 2 are odd.

Beyond 5 the alternating sequence of differences 2,4
It is easy to construct below with dx initially 4

dx=abs(dx-6)

[Type text]

At this stage we can propose a basic structure for our algorithm:

while x<n do
begin
(a) generate next x using the construct dx := abs(dx—6),
(b) test whether x is prime using all primes =\/x,
(¢) if a prime is found that is less than \/» then store it for
later testing against larger x values.
end

To test all integers up to n for primality we will need to retain all primes up to
V.

Every time a new x is brought up for testing we will need to ensure that
we have the appropriate set of primes to divide into x.

Working through some examples we find:

X range prime divisors required
2=x<9 2
9=<x<25 2,3
25=x<49 2,3,5
49=x<121 2,3,5,7

Starting out with

pl1] := 2; p[2] := 3; p[3] := 5;
and plimsq := 25; limit := 3

we can include the following conditional statement before testing each x
value for primality

if x> = plimsq then
begin
limit .= limit+1;
plimsq := sqr(p[limit])
end

It i1s only necessary to increase limit by 1 with this test because the difference
between the squares of adjacent primes is always greater than 4, the largest
increment that is made in x.

[Type text]

Once we have established the proper set of prime divisors we need to test a
given x, the next step is to actually test x for primality. For this purpose we
can use a loop that successively tests all the prime divisors with indices less
than limir against x.

Some thought reveals there are two conditions under which this loop
should terminate:

1. an exact divisor of x has been found—so it cannot be prime;
2. we have reached the divisor with index one less than limit.

Using the mod function to test for exact division and using the remainder
rem to set the Boolean condition prime we get:

j 1= 3; prime := true;
while prime and (j<limir) do
begin
rem := x mod p|j];
prime := rem <> (;
ji=j+1
end

Algorithm description

1. Initialize and write out the first 3 primes. Also initialize the square of
the 3% prime.

2. Initialize x to 5.

3. While x less than n do
(a) get next x value excluding multiples of 2 and 3;
(b) if not past end of multiples list then

(b.1) if x= square of largest prime then
(1.a) include next prime multiple as its square,
(1.b) update square by squaring next prime >\/x;
(c) while have not established x is non-prime with valid prime multi-
ples do
(c.1) while current prime multiple is less than x, increment by
current prime value doubled,
(c.2) do prime test by comparing x with current multiple;
(d) if current x prime then
(d.1) write out x and if it is less than \/n store it.

[Type text]

[Type text]

