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     UNIT-II     

 

Finding The Square Root Of A Number 

Given a number 'm' devise an algorithm to compute its square root. 

square root of a number 4 is 2 

       9 is 3  

from the above examples we can say that square root n, of another number m must 

satisfy the equation.  

  n * n = m  (1) 

to find the square root of a given number the following systematic approach could 

be adopted. 

1. Choose a number n less than the number m want the square root of. 

2. Square n and if it is greater than m decrease n by 1 and repeat step 2, else go to 

step 3. 

3. when the square of our guess at the square root is less than m we can start 

increasing n by 0.1 until we again compute a guess greater than m. 

At this point, we start decreasing our guess by 0.01 and so on until we have 

computed the square root we require the desired accuracy. 

 + Desired square root 

Deviation from  

desired solution  -----------------------------------------------  

 -   

                 Number of iterations 

Through this algorithm , the number of iterations it requires depends critically on how good 

our initial guess is.  
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At this stage we should do some mathematical analysis and do the algorithm with a good 

strategy. 

Algorithm Description: 

1. Establish 'm' the  number whose square root is required and the termination condition error  

'℮'. 

2. Set the initial guess g2 to m/2. 

3. Repeatedly  

(a) let g1 assume the role of g2, 

(b) generate a better estimate g2 of the square root using the averaging formula, 

until the absolute difference between g1 and g2 is less than error '℮'. 

4. Return the estimated square root g2.  

Pascal Implementation:  

function sqroot(m, error:real):real; 

var g1{previous estimate of square root}, 

     g2{current estimate of square root}: real; 

begin{estimates square root of number m} 

g2: m/2; 

repeat 

g1=g2; 

g2=(g1+m/g1)/2; 

until abs(g1-g2)<error; 

sqroot:= g2; 

end 

Notes:  
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This design is implemented with feedback principle. that is we keep making corrections to our 

estimate in way dependent on how much the previous solution deviated from the desired 

result. 

 

The Smallest Divisor Of An Integer  

Given an integer n devise  an algorithm that will find its smallest exact divisor other than one.  

All even numbers are divisible by 2. it follows that if the number is not divisible by 2 it will 

not divisible by 4,6,8,10,..... And So if the number we are testing is odd, we should consider 

odd numbers as potential smallest divisor candidates.  

The overall algorithm cam be written as: 

1. If the number 'n' is even, then the smallest divisor is 2 

else 

 (a) Compute the square root r of n, 

(b) while no exact divisor less than square root of n do 

   (b.1) test next divisor in sequence 3, 5, 7, ... 

 

Algorithm Description 

1. Establish 'n' the integer whose smallest divisor is required. 

2. if 'n' is not odd then return 2 as the smallest divisor 

else 

  (a) Compute 'r' the square root of 'n', 

  (b) initialize divisor 'd' to 3, 

  (c) while not an exact divisor and square root limit not reached do 

     (c.1)  generate next number in odd sequence d, 

(d) if current odd value d is an exact divisor, then divide it as the  

   exact divisor of 'n' 
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else  

    return 1 as the smallest divisor of 'n'.  

 

 Pascal Implementation 

function sdivisor(n:integer): integer; 

var d {current divisor and member of odd sequence}, 

      r { integer less than or equal to square root of n}: integer; 

begin{finds the smallest exact divisor of an integer n, returns 1 if n prime} 

      if not odd(n) then 

            sdivisor:=2 

else 

   begin{terminates search for smallest divisor at sqrt (n)} 

         r:=trunc(sqrt(n)); 

         d:=3; 

     while(n mod d< >0) and (d < r) do  

    d:=d+2; 

     if n mod d =0 then 

      sdivisor:=d 

else 

      sdivisor:=1       end     end 

 

 

The Greatest Common Divisor of Two Integers 

Given two positive non-zero integers n and m design an algorithm for finding their greatest 

common divisor. 
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The gcd of two integers is the largest integer that will divide exactly into the two integers with 

no remainder. We can build up to the common divisor of the two integers by considering an 

exact divisor of a single integer. An exact divisor of a number is another smaller number  that 

divides the original number up into set of equal parts.   

The gcd of two numbers cannot be bigger than the smaller of the two numbers.  

Next point is how to continue when the smaller of the two numbers n and m is not their gcd 

The basic strategy for computing the gcd of two numbers: 

 1. Divide the larger of two numbers by the smaller number. 

 2. if the smaller number exactly divides into larger number  

     then the smaller number is the gvd 

else 

     remove from the larger number the part common to the smaller number and repeat the 

whole procedure with the new pair of numbers.  

Terminating the gcd mechanism can be detected by there being no remainder after mod 

function 

                            r:= n mod m  

if r is zero then m is the gcd, else  

while gcd not found do 

a. get remainder by dividing larger integer by the smaller integer; 

b. let the smaller integer assume the role of the larger integer; 

c. let the remainder assume the role of the smaller integer. 

repeat the same process until  zero remainder.   
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Applications:  

Reducing a fraction to its lowest terms.  



[Type text] 
 

Computing the Prime Factors of an Integer 

Every integer can be expressed as a product of prime numbers. Design an algorithm 

to compute all the prime factors of an integer n. 

All the prime factors of 'n' must be less than or equal to √n. This suggests that to 

produce a list of primes up to √n before going through the process of trying to 

establish the prime factors of n. But this may end up in computing a lot more primes 

that are needed as divisors.  

A better and more economical strategy is therefore to only compute prime divisors 

as needed.  
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Applications: 

Factoring numbers with up to six digits.  
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Generation of Pseudo Random numbers 

Use the linear congruential method to generate a uniform set of pseudo random 

numbers.  

Algorithm Development 

Random numbers generators are frequently used in computing science for among 

other things, testing and analysing the behaviour of algorithms. 

A sequence of random numbers should exhibit the following behaviour  

i) The sequence should appear as though each member had occurred by chance. 

ii) each number should have a specified probability of falling within a given range.  

The implementation of the linear congruential method is very straight forward. 

Successive members of the linear congruential sequence {x} are generated using 

the expression 

 xn+1  = (axn+b) mod m        for n>=0 

The parameters a, b and m are referred as the multiplier, increment and modulus 

respectively.  

All parameters should be integers greater than or equal to zero and m should be 

greater than x0, a and b. 

Parameter X0 

The parameter X0 can chosen arbitrarily within the range 0<= X0 <m. 

 

 

Parameter m  

The value of m should be greater than or equal to the length of the random 

sequence required.  
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It must be possible to do the computation (a * x+ b) mod m without roundoff. 

Parameter a 

The choice of a depends on the choice of  m. If m is a power of 2 then a should 

satisfy the condition  

 a mod 8=5 

a should be larger than √m and less than m-√m 

Parameter b 

The constant b should be odd and not a multiple of 5. 

Notes on design. 

The linear congruential method is a simple, efficient and practical method for 

generating pseudo random numbers.  

The theoretical basis for the choice of parameters involves a highly sophisticated 

analysis.  
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Raising A Number To A Larger  Power  

Given some integer x, compute the value of Xn  where n is a positive integer 

considerably greater than 1.  

Evaluating the expression 

 p=Xn  

In the power generation process, one of two conditions apply 

(a) where we have an odd power it must have been generated from the power that 

is one less (e.g X23  = X22 * X) 

(b) where we have an even power, it can be computed from a power that is half its 

size (e.g X22  = X112 * X11) 

These last two statements capture the essence of the algorithm. This means that 

our algorithm will need to be in two parts. 

1. a part that determines the multiplication strategy and 

2. a second part that actually does the power evaluation. 

To map out the multiplication procedure, we can start with the power required and 

determine whether it is even or odd. 

The next step is to integer-divide the current power by 2 and repeat the even/odd 

determination procedure.  

if the current d array element is zero then  

(a)  we simply square the current power product p 

else 

(a')  we square the current product p and multiply by X to generate an odd power.  

The algorithm will need to terminate when n is reduced to zero 
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Applications. 

Encryption  and testing for non-priority  of numbers.  
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Computing the nth  Fibonacci number 

Given a number n generate the nth number of the Fibonacci sequence 

The nth  member of the fibonacci sequence fn is defined recursively as follows 

  f1 =0 

  f2 =1 

  fn =fn-1 + f n-2   for n>2 

 

The relationship is  

 

we couldn't find any doubling sequence in the above expression. 

The next thing is try some combination of two fibonacci sequence to generate the doubled 

fibonacci number. 

Let us try to write f8  in terms of f4 and f5  
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To generate the f2n+1 fibonacci number we need f2n  and f2n-1 
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Generating Prime Numbers 

Design an algorithm to establish all the primes in first n positive numbers 

A prime number is a positive integer that is exactly divisible only by 1 and itself. 

The first few prime are 

2,3,5,7,11,13,17,19,..... 

All primes apart from 2 are odd. 

Beyond 5 the alternating sequence of differences 2,4 

It is easy to construct below with dx initially 4 

dx=abs(dx-6) 

 



[Type text] 
 

 

 



[Type text] 
 

 

 

 



[Type text] 
 

 

 

 

 

 


