
[Type text]

 UNIT-II

Finding The Square Root Of A Number

Given a number 'm' devise an algorithm to compute its square root.

square root of a number 4 is 2

 9 is 3

from the above examples we can say that square root n, of another number m must

satisfy the equation.

 n * n = m (1)

to find the square root of a given number the following systematic approach could

be adopted.

1. Choose a number n less than the number m want the square root of.

2. Square n and if it is greater than m decrease n by 1 and repeat step 2, else go to

step 3.

3. when the square of our guess at the square root is less than m we can start

increasing n by 0.1 until we again compute a guess greater than m.

At this point, we start decreasing our guess by 0.01 and so on until we have

computed the square root we require the desired accuracy.

 + Desired square root

Deviation from

desired solution ---

 -

 Number of iterations

Through this algorithm , the number of iterations it requires depends critically on how good

our initial guess is.

[Type text]

At this stage we should do some mathematical analysis and do the algorithm with a good

strategy.

Algorithm Description:

1. Establish 'm' the number whose square root is required and the termination condition error

'℮'.

2. Set the initial guess g2 to m/2.

3. Repeatedly

(a) let g1 assume the role of g2,

(b) generate a better estimate g2 of the square root using the averaging formula,

until the absolute difference between g1 and g2 is less than error '℮'.

4. Return the estimated square root g2.

Pascal Implementation:

function sqroot(m, error:real):real;

var g1{previous estimate of square root},

 g2{current estimate of square root}: real;

begin{estimates square root of number m}

g2: m/2;

repeat

g1=g2;

g2=(g1+m/g1)/2;

until abs(g1-g2)<error;

sqroot:= g2;

end

Notes:

[Type text]

This design is implemented with feedback principle. that is we keep making corrections to our

estimate in way dependent on how much the previous solution deviated from the desired

result.

The Smallest Divisor Of An Integer

Given an integer n devise an algorithm that will find its smallest exact divisor other than one.

All even numbers are divisible by 2. it follows that if the number is not divisible by 2 it will

not divisible by 4,6,8,10,..... And So if the number we are testing is odd, we should consider

odd numbers as potential smallest divisor candidates.

The overall algorithm cam be written as:

1. If the number 'n' is even, then the smallest divisor is 2

else

 (a) Compute the square root r of n,

(b) while no exact divisor less than square root of n do

 (b.1) test next divisor in sequence 3, 5, 7, ...

Algorithm Description

1. Establish 'n' the integer whose smallest divisor is required.

2. if 'n' is not odd then return 2 as the smallest divisor

else

 (a) Compute 'r' the square root of 'n',

 (b) initialize divisor 'd' to 3,

 (c) while not an exact divisor and square root limit not reached do

 (c.1) generate next number in odd sequence d,

(d) if current odd value d is an exact divisor, then divide it as the

 exact divisor of 'n'

[Type text]

else

 return 1 as the smallest divisor of 'n'.

 Pascal Implementation

function sdivisor(n:integer): integer;

var d {current divisor and member of odd sequence},

 r { integer less than or equal to square root of n}: integer;

begin{finds the smallest exact divisor of an integer n, returns 1 if n prime}

 if not odd(n) then

 sdivisor:=2

else

 begin{terminates search for smallest divisor at sqrt (n)}

 r:=trunc(sqrt(n));

 d:=3;

 while(n mod d< >0) and (d < r) do

 d:=d+2;

 if n mod d =0 then

 sdivisor:=d

else

 sdivisor:=1 end end

The Greatest Common Divisor of Two Integers

Given two positive non-zero integers n and m design an algorithm for finding their greatest

common divisor.

[Type text]

The gcd of two integers is the largest integer that will divide exactly into the two integers with

no remainder. We can build up to the common divisor of the two integers by considering an

exact divisor of a single integer. An exact divisor of a number is another smaller number that

divides the original number up into set of equal parts.

The gcd of two numbers cannot be bigger than the smaller of the two numbers.

Next point is how to continue when the smaller of the two numbers n and m is not their gcd

The basic strategy for computing the gcd of two numbers:

 1. Divide the larger of two numbers by the smaller number.

 2. if the smaller number exactly divides into larger number

 then the smaller number is the gvd

else

 remove from the larger number the part common to the smaller number and repeat the

whole procedure with the new pair of numbers.

Terminating the gcd mechanism can be detected by there being no remainder after mod

function

 r:= n mod m

if r is zero then m is the gcd, else

while gcd not found do

a. get remainder by dividing larger integer by the smaller integer;

b. let the smaller integer assume the role of the larger integer;

c. let the remainder assume the role of the smaller integer.

repeat the same process until zero remainder.

[Type text]

Applications:

Reducing a fraction to its lowest terms.

[Type text]

Computing the Prime Factors of an Integer

Every integer can be expressed as a product of prime numbers. Design an algorithm

to compute all the prime factors of an integer n.

All the prime factors of 'n' must be less than or equal to √n. This suggests that to

produce a list of primes up to √n before going through the process of trying to

establish the prime factors of n. But this may end up in computing a lot more primes

that are needed as divisors.

A better and more economical strategy is therefore to only compute prime divisors

as needed.

[Type text]

Applications:

Factoring numbers with up to six digits.

[Type text]

Generation of Pseudo Random numbers

Use the linear congruential method to generate a uniform set of pseudo random

numbers.

Algorithm Development

Random numbers generators are frequently used in computing science for among

other things, testing and analysing the behaviour of algorithms.

A sequence of random numbers should exhibit the following behaviour

i) The sequence should appear as though each member had occurred by chance.

ii) each number should have a specified probability of falling within a given range.

The implementation of the linear congruential method is very straight forward.

Successive members of the linear congruential sequence {x} are generated using

the expression

 xn+1 = (axn+b) mod m for n>=0

The parameters a, b and m are referred as the multiplier, increment and modulus

respectively.

All parameters should be integers greater than or equal to zero and m should be

greater than x0, a and b.

Parameter X0

The parameter X0 can chosen arbitrarily within the range 0<= X0 <m.

Parameter m

The value of m should be greater than or equal to the length of the random

sequence required.

[Type text]

It must be possible to do the computation (a * x+ b) mod m without roundoff.

Parameter a

The choice of a depends on the choice of m. If m is a power of 2 then a should

satisfy the condition

 a mod 8=5

a should be larger than √m and less than m-√m

Parameter b

The constant b should be odd and not a multiple of 5.

Notes on design.

The linear congruential method is a simple, efficient and practical method for

generating pseudo random numbers.

The theoretical basis for the choice of parameters involves a highly sophisticated

analysis.

[Type text]

Raising A Number To A Larger Power

Given some integer x, compute the value of Xn where n is a positive integer

considerably greater than 1.

Evaluating the expression

 p=Xn

In the power generation process, one of two conditions apply

(a) where we have an odd power it must have been generated from the power that

is one less (e.g X23 = X22 * X)

(b) where we have an even power, it can be computed from a power that is half its

size (e.g X22 = X112 * X11)

These last two statements capture the essence of the algorithm. This means that

our algorithm will need to be in two parts.

1. a part that determines the multiplication strategy and

2. a second part that actually does the power evaluation.

To map out the multiplication procedure, we can start with the power required and

determine whether it is even or odd.

The next step is to integer-divide the current power by 2 and repeat the even/odd

determination procedure.

if the current d array element is zero then

(a) we simply square the current power product p

else

(a') we square the current product p and multiply by X to generate an odd power.

The algorithm will need to terminate when n is reduced to zero

[Type text]

Applications.

Encryption and testing for non-priority of numbers.

[Type text]

Computing the nth Fibonacci number

Given a number n generate the nth number of the Fibonacci sequence

The nth member of the fibonacci sequence fn is defined recursively as follows

 f1 =0

 f2 =1

 fn =fn-1 + f n-2 for n>2

The relationship is

we couldn't find any doubling sequence in the above expression.

The next thing is try some combination of two fibonacci sequence to generate the doubled

fibonacci number.

Let us try to write f8 in terms of f4 and f5

[Type text]

To generate the f2n+1 fibonacci number we need f2n and f2n-1

[Type text]

[Type text]

Generating Prime Numbers

Design an algorithm to establish all the primes in first n positive numbers

A prime number is a positive integer that is exactly divisible only by 1 and itself.

The first few prime are

2,3,5,7,11,13,17,19,.....

All primes apart from 2 are odd.

Beyond 5 the alternating sequence of differences 2,4

It is easy to construct below with dx initially 4

dx=abs(dx-6)

[Type text]

[Type text]

[Type text]

